o Ta

ARDUINO-BASED HEART RATE AND
OXYGEN SATURATION MEASUREMENT

SYSTEM DESIGN
Ve
bu o
y

Robi Dany Riupassa BN

'|Handbook

03 - Getting Started with Arduino

04 - MAX30102 Pulse Oximeter and
Heart Rate Sensor

)

Smart cities
« Water distribution

 Waste mapgeeiei Energy engagement

Smart homes » Grid automation
» Smart door lock » Wireless grid communication
» Smart bulbs S

Wearables
» Smart watches
* Fitness and activity monitor

« Smart thermostat

Health care
» Heart rate and blood
pressure monitor

Home appliances
* Refrigerator

» Coffee maker

* Air conditioner

Transportation | el
» Traffic managementv WS <®, A ol Water heater

* |OT makes easy parking

» \ehicle location monitoring Agriculture
~ | | » Smart farming
Smart manufacturing Cars » Climate monitoring and forecasting
» Industrial communication « Automotive cars * Crop monitoring
* Production flow monitoring * Engine management
* Improve field service scheduling ©) ge:

—

\ PULOXY
x icholas Austrin Theos , Sharon Gracia Edward)

PULOXY is an innovative project that creates an loT-based device for simultaneous detection of oxygen saturation and heart rate in humans.
Utilizing the Wemos D1 R32 microcontroller and MAX30102 sensor, this device provides vital health information with high accuracy. In
addition to detecting health parameters, PULOXY also has the ability to store the history of each measurement and provide data access
through the Blynk IoT application. The development process involves designing electronic circuits and coding algorithms to ensure accurate
measurement results. Test results show that PULOXY has an accuracy rate of up to 99% compared to conventional pulse oximeters.
Furthermore, the device is equipped with a feature to display histograms of each measurement, allowing users to track their health trends
over time. It is hoped that the presence of PULOXY can enhance overall and more efficient health monitoring, as well as provide a more
practical solution for health monitoring for the wider community. The conclusion from the testing indicates that PULOXY can be an effective
replacement for conventional pulse oximeters, as it can store measurement data and provide better accessibility through the IoT platform.

Thus, PULOXY can make a significant contribution to improving the quality of health monitoring and providing the necessary information for
optimal health maintenance.

PULOXY

PulseOx Thermoscan «

Wemos D1 R32 SENSOR MAX30102

Battery
oV

Getting Started with Arduino

Arduino UNO R3

Reset Button LED — Load & Pin 13

14x Digital IN/OUT
NOVNE M NS (6x PWM™ OUT)

Pt ' g
DIGITAL (PWM~) & & (5V, 40mA)

~ LED - Power ON
(Green or Orange)

USB
(Power 5V) Atmel ATmega328P

Microcontroller
(8-bit, 16 MHz,

ety ey gyl : 32 KB Flash,
; 1 KB EEPROM,

2 KB SRAM)

DC Power Jack Power OUT Power IN 6x Analog IN
(AC-to-DC adapter) (5V, 3.3V) (9V battery) (0-5V 10-bit ADC)

(7-12V)

SDA and SCL

Arduino Uno

SDA: PIN18
SCL: PIN19

(no label on the PCB front, only visible from the side)

-
¥i

oUInpuYy

Fs
.....

§38588
BEEREZ

w Breadboard and Jumper

VA

N

Arduino IDE 2.1.0

The new major release of the Arduino IDE is faster and even
more powerfull In addition to a more modern editor and a
more responsive interface it features autocompletion, code
navigation, and even a live debugger.

For more details, please refer to the Arduino IDE 2.0
documentation.

Mightly builds with the latest bugfixes are available through
the section below.

SOURCE CODE

The Arduino IDE 2.0 is open source and its source code is
hosted on GitHub.

Arduino IDE

DOWNLOAD OPTIONS

Windows Win 10 and newer, 64 bits
Windows MSI installer
Windows ZIP file

Linux Appimage 64 bits (X86-64)
Linux 21 file 64 bits (X86-64)

macDS§ Intel, 10.14: "Mojave” or newer, 64 bits

macO$S Apple Silicon, 11: "Big Sur” or newer, 64 bits

Release Notes

https://www.arduino.cc/en/software

Arduino IDE

YERLFY FUFLOAD

SELECT BOARD £ PORT OFEN SERIAL MONITOR

AnalogReadSerial | Arduine IDE 2.0.0-red

Arduing MER WiF 1010 -

LS e TOHBOOK
1 /=
7 Amp ogReadserial

PEN SERIAL PLOTYER

4 Heads an analog Lnput om pin @, prints the result to the Serial Monitor.
3 Lranhi 1=l iration is available using Serial Plotter [(Tools > Serial Plotter me

LIBHARY MANALER

[T
in of & potenticmeter to pin A8, snd the outside pins to +5V snd ground

j ole code is in the public domain.
DEBUGGER

https: /A ardulno. ccfen/Tutorial/BulltInExanples /Ana logReadSerial

iy Fif the setup routine rund once when you press resetd
14 vold setupl) {

15
18 Serial.beginiS6Ra) ;
17 ¥

initlalize serlal communlcation at BhB@ Dits per second

18 S the Lloop roeting rung over and over sgaln forever

20 wold loopl) {

1 ff read the input on analog pinm @:
FF it sensarvalie = analoglead] d);
23 £ print out the value you resd:
A Carial Aarsedlnlconsmaeife Tosab -

https://docs.arduino.cc/software/ide-v2/tutorials/getting-started-ide-v2

\\

The Arduino programming language is built upon the C/C++ language so
they both share similar syntax and structure. You may come across

resources that refer to Arduino code as “embedded C" or “"embedded C++".

Upload Code
\ How to Upload Code to an Arduino Board

To upload code to an Arduino board, you'll need both hardware and

\\ software. The hardware is the board which is the Uno board in our case, and
the software is the Arduino sketch in the IDE.

Here are the steps:

Step #1 — Connect the Arduino Board
Connect the Arduino board to your computer using the USB cable. Without

this step, you can't go further. ‘

Step #2 - Create a Sketch

Now it's time to launch the IDE and write some code.

Upload Code

Step #3 — Select the Board and Port

You can select the board to upload your code to from the IDE. Here's an

image showing what that looks like:

File Edit Sketch Tools Help

Select Board

sketch oct4 L}, Arduino Uno
COM3

| Select other board and port...

pinMode(ledPin, OUTPUT);

loop() {
digitalWrite(ledPin, HIGH);
delay(1ee@);
digitalWrite(ledPin, LOW);
delay(1668);

}

Upload Code

Step #4 - Verify the Code

You can use the verify button to compile the code and check for errors. If

errors exist, you'll get an error message to show you the possible cause.

¥ Arduino Uno

sketch octda.ino

ledPin = 13;

setup() {
pinMode(ledPin, OUTPUT);

loop() {
digitalWrite(ledPin, HIGH);
delay(1608);
digitalWrite(ledPin, LOW):
delay(1608);

N Upload Code

\\\ Step #5 — Upload the Code

You can upload the code using the upload button (the button after the
verify button).

Basics of Arduino Programming

Variables and Data Types in Arduino

Variables and data types are used in most programming languages to store

and manipulate data. You can think of variables as containers or storage

units. Data types, like the name implies, are the type of data stored in

variables.

In Arduino programming, you must specify the data type of a variable
before using it. That is:

dataType variableMame = wvariableValue

The int datatype is used to store integer values. The Uno board has a 16-

Basics of Arduino Programming
\ int Data Type in Arduino

bit integer capacity so it can store values that fall within the range of
\ -32,76810 32,767.

int redLED = &;

In the code above, we created an integer variable called redLED witha

value of 6.

The int datatype can also store negative integers:

int redLED = -6&;

The long datatypeissimilarto int but has a wider range of integer

Basics of Arduino Programming
\ long Data Type in Arduino

values. It has a 32-bit integer limit which falls within the range of
\ -2,147483,64810 2,14/7,483,64/.

long largeNumber = &g88;

float Data Type in Arduino

The fleat datatype can be used to store numbers with decimals. Float

variables can store values up to 3.4028235E+38 and values as low as
-3.4028235E+38.

float num = 18.5;

Basics of Arduino Programming

String Data Type in Arduino

You can use the String data type to store and manipulate text. You'll work

with strings occasionally to display information in the form of text when
building projects.

Here's a code example:

String greeting = "Hello World!",

The value of strings are nested within double quotation marks as can be
seen in the code above.

You can use both bool and boolean tostore/denote boolean values of
either true or false.

Basics of Arduino Programming
\ bool and boolean Data Types in Arduino

bool roomIsCold = false;

Boolean values are mostly used with logical and comparison operators, and
conditional statements (you'll learn about these later in this chapter) to

manipulate and control different outcomes in an Arduino program.

byte Data Type in Arduino
The byte data type has an 8-bit unsigned integer limit that ranges from O

to 255. Unsigned means that it can't store negative values.

byte senscrvalue = 28a;

\/ Basics of Arduino Programming
\ Operators in Arduino

Operators are symbols or characters that can be used to perform certain
operations on operands. An operand is simply any valuel(s) an operator acts

\ on.

There are different categories of operators in Arduino like:

Arithmetic Operators

Arithmetic operators are used to perform mathematical operations like
addition, subtraction, division, multiplication, and so on. Here are some
arithmetic operators you should know:

Addition(+) Operator
The addition operator, denoted by the + symbol, adds two operands
together:

int a = 5;
int b = 18;

S/ we use addition operator to add a and b below
int c =a + b;

Serial.print{c):
/i 15

The subtraction operator subtracts the value of one operand from another

Getting Started with Arduino
\ Subtraction(-) Operator

operand. It is denoted by the - symbol:

int a = 5;
int b = 18;

// we use subtraction cperator to subtract b from a below
int c = b - a;

Serial.print(c};
{5

Multiplication (*) Operator
You can use the multiplication operator (#) to multiply two operands:

int a = 5;
int b = 18;

J/ we use multiplication operator to multiply a by b below
int c = a * b;

serial.print(c);
ff 58

Getting Started with Arduino

Conditional Statements in Arduino

You can use conditional statements to make decisions or execute code
based on specific conditions. You can combine conditional statements and
logic (like operators in the last section) to control how code is executed.

Let's take a look at some conditional statements and how to use them:

if Statement
The if statementis used to execute code if a conditionis true . Here's

what the syntax looks like:

if (condition) {
// code to be executed if condition is true

b

Getting Started with Arduino

In the syntax above, condition denotes a specified logic. If the condition is

true then the code in the curly brackets will be executed. Here's an
example:

int x = 5;
if (x < 18) {

Serial.print{"x 1s less than 12");
h

Jf x is less than 18

The else statement is used to execute code if a condition is false.

Getting Started with Arduino
\ else Statement

\ int score = 28;

if (score > 58) {
serial.primt{"vou passed the exam!"};
} else {
cerial.primt{"vou have to rewrite the exam!"};

h

Jf vou have to rewrite the exam

In the code above, the condition givenis false.Sothe code for the else
statement will be executed because the score variable is not greater than
50.

Remember: the code for the else statement only runs when the condition
is false.If the conditionis true thenthe code for the if statement will
be executed.

checked. Here's the syntax:

Getting Started with Arduino
\ else if Statement
You canuse the else if statement to define multiple conditions to be

\ if (condition1) {

/! code to be executed if conditionl is true
} else if (condition2){
/! code to be executed if condition2 is true
} else {
/! code to be executed if conditionl and condition? are false

H

In the syntax above, there are two conditions (you can create more than
two conditions). If eendition1 is true,then code in the curly bracket for

conditionl will be executed.

If condition1is false,then conditien2 will be evaluated. If condition2 is
true , its block of code will be executed.

If both condition1 and condition2 are false,the else statement's code
will be executed.

Getting Started with Arduino

switch-case Statement

In the last section, we saw how to create multiple conditions using else if
statements. Your code might become hard to read if you have many
conditions. We can clean it up and make the code more readable using
switch statements.

Here's what the syntax looks like:

switch ([expression] {

case 1:
/! Code to be executed if expression equals case 1
break

case 2:
// Code to be executed if expression equals case 2
break,

case 3:
// Code to be executed if expression equals case 3
break,

default:
// Code to be executed if expression doesn’t match any case
break ;

Getting Started with Arduino

Loops in Arduino

You can use loops to execute code repeatedly until a certain condition is

met. You can also use loops to iterate over a collection of data and execute
code on all elements of the collection.

There are different type of loops you can use in Arduino like the for loop,

while loop,and do-while loop. Let's take alook at their syntax along with
some practical examples:

for loop
You canuse the for loecp to iterate through a collection or execute code
until a certain condition is met. It is commonly used when you know the
number of times the loop is supposed to run.

Here's the syntax:

for (initialization: condition; increment/decrement) {
// code to be executed

i

\/ Getting Started with Arduino
\ while loop

The while loop works just like the for loop — it executes code as long as

\ the given condition is true . But its often used when the number of times
\ the loop is supposed to run is unknown.

Here's the syntax;

while (condition) {
// Code to be executed

i

In the syntax above, the code will continue to run until the condition
becomes false.

Getting Started with Arduino

Functions in Arduino

In the last chapter, we discussed some built-in functions in Arduino that can
be used to carry out a variety of tasks related to Arduino hardware and
software components. All we did was write the function name and passin
parameters where necessary and we got the desired outcome.

For instance, the digitalwrite() functionwritesvalues to digital pins
using two parameters (the pin number and the value to be sent to the pin).
Under the hood, some code logic handles that operation.

Let's assume that the logic required to send values to digital pins was up to
a hundred lines of code. Without functions, you'll have to write those
hundred lines every time you wanted to send values to digital pins.

Functions prevent you from having to reinvent the wheel. They also help
you break your code down into smaller, more readable and manageable
parts.

Just like how built-in functions can be reused to perform a particular task
repeatedly, you can also create your own functions for specific
functionalities, and that's exactly what you'll learn in this chapter.

Getting Started with Arduino

How to Declare a Function with the void Type

In the last chapter, we discussed the void Setup() and void loop()
functions. They are two built-in functions that you'll use in every Arduino
sketch. These functions are defined using the veid keyword because they
return nothing

Here's what the syntax looks like for functions that use the veid type:

void functionMame{optionalParameters) {
// code logic

i

In the syntax above, functionName denotesthe name of the function. We
can use that name to call the function in order to execute the code defined

in the function.

optionalParameters are used to pass external data to the function while
the code logic that runs when the function is called is written between the

curly brackets.

\/ Getting Started with Arduino
\ Here's an example:

\\

// function declaration
vold primtMame{string userName) {
Serial.println(“Hello " + userdame};

¥

void setup{) {
serial.begin{2cea);

¥

vold loop() {
printName("Ihechikara®); // function call

delay{leea);
1

Getting Started with Arduino

Commonly Used Built-in Functions in
Arduino Sketch

In this section, we'll discuss some of the commonly used built-in functions
you'll come across when writing or reading Arduino code. We'll make use of
them in most of the upcoming chapters of this handbook.

We'll begin with the two main parts of an Arduino sketch — the setup()

and leop() functions.

setup() and loop() Functions in Arduino

You canuse the setup() functionto configure analog and digital pins,
initialize variables, and do other setup functionalities. The setup()
function is executed once — when the board is powered on or reset.

The 1loop() function runs continuously. This part of the sketch is where you
write all the code logic. You canuse the leop() function to give the
Arduino board instructions on different components and sensors.

N Getting Started with Arduino

\\

viold setup() {
Ff put your setup code here, to run once:

¥

vold loop() {
Jf put your main code here, to run repeatedly:

\/

Serial Monitor in Arduino

How to Initialize the Serial Monitor With
Serial.begin()

You canuse the Serial.begin() function toinitialize the serial monitor. It
takes in the baud rate as its parameter. Here's what the syntax looks like:

Serial.begin(baudRate)

The baud rate is the speed of data transfer between the Arduino board and

the computer or any other device communicating with the Arduino board
through the serial monitor.

The most commonly used baud rate is 9600, but you'll also come across
resources that make use of 115200, 57600, and 38400, and so on.
Whichever baud rate you specify in the serial.begin() function should
always match the baud rate seen in the serial monitor window.

Serial Monitor in Arduino
How to Send Data with Serial Monitor
You can use different built-in functions reserved for serial communication
in Arduino. We won't discuss all the built-in serial functions in Arduino -
\ we'll just look at some you'll use/come across regularly. You can see more

functions here.

print() and println() Functions

The print() and println() functions both print data to the serial monitor.
The difference between the two is that print() printsdataonthe same
line while println() printseach dataonanewline.

Here are some examples:

void setup() {
Serial.begin{9cee);

h

vold loop() {
Serial.print{"Hello"};
delay(1886a);

h

\/

MAX30102 Sensor

MAX30102 Module Hardware Overview

The module features the MAX30102 — a modern (the successor to the MAX30100),

integrated pulse oximeter and heart rate sensor IC, from Analog Devices. It combines two
LEDs, a photodetector, optimized optics, and low-noise analog signal processing to detect
pulse oximetry (SpO2) and heart rate (HR) signals.

MAX30102

|

Photodetector

RED and
IR LED

\\

A

The MAX3(
RED and IR

MAX30102 Sensor

Power supply

Current draw

Red LED Wavelength
IR LED Wavelength
Temperature Range

Temperature Accuracy

3.3V to 5.5V

~600pA (during measurements)
~0.7pA (during standby mode)
bo0nm

880nm

-40°C to +85°C

+1°C

3V for the

N MAX30102 Sensor

Power supply 3.3V to 5.5V

~600pA (during measurements)

Current draw
~0.7pA (during standby mode)

Red LED Wavelength 660nm
IR LED Wavelength 880nm
Temperature Range -40°C to +85°C

Temperature Accuracy +1°C

MAX30102 Sensor

How MAX30102 Pulse Oximeter and Heart
Rate Sensor Works?

The MAX30102, or any optical pulse oximeter and heart-rate sensor for that matter, consists
of a pair of high-intensity LEDs (RED and IR, both of different wavelengths) and a
photodetector. The wavelengths of these LEDs are 660nm and 880nm, respectively.

7N\
— il

Photo- Red and IR
detector LEDs

\/

MAX30102 Sensor

Heart Rate Measurement

The oxygenated hemoglobin (HbQO2) in the arterial blood has the characteristic of absorbing
IR light. The redder the blood (the higher the hemoglobin), the more IR light is absorbed. As
the blood is pumped through the finger with each heartbeat, the amount of reflected light
changes, creating a changing waveform at the output of the photodetector. As you
continue to shine light and take photodetector readings, you quickly start to get a heart-
beat (HR) pulse reading.

Blood vessel
(Artery) - » Hemoglobin

MAX30102 Sensor
Pulse Oximetry

Pulse oximetry is based on the principle that the amount of RED and IR light absorbed
varies depending on the amount of oxygen in your blood. The following graph is the

absorption-spectrum of oxygenated hemoglobin (HbO2) and deoxygenated hemoglobin

1000
—— Hb (1/mm)
—— HbO, (1/mm)
Red IR
- 660NM
=
a
S
i 1
o
= 8
Last Minuge
ENGINEERS cam
ﬂ.‘l . 1 L < 1 -
300 400 S00 600 700 800 900 1000

Wavelength (nm)

As you can see from the graph, deoxygenated blood absorbs more RED light (660nm), while
oxygenated blood absorbs more IR light (880nm). By measuring the ratio of IR and RED
light received by the photodetector, the oxygen level (Sp0O2) in the blood is calculated.

\) MAX30102 Sensor
\ MAX30102 Module Pinout

\\

The MAX30102 module brings out the following connections.

o '7 Jf RD |
ars | | pom

o (o (&
ﬂ’—(? ('—ﬂ

[2, 3
T Last Minute
[MAX30102 Module ENCINEERS oo

N

\) MAX30102 Sensor
s\\ Wiring up a MAX30102 Module to an Arduino

Last Minute
7 ENGINEERS .com

N Adjust Parameters

74 byte ledBrightness = 68; //Options: 8=0ff to 255=58mA

75 byte sampleAverage = 4; //Options: 1, 2, 4, 8, 16, 32

76 byte ledMode = 2; //Options: 1 = Red only, 2 = Red + IR, 3 = Red + IR + Green
17 byte sampleRate = 188; //Options: 58, 188, 280, 488, 8606, 1886, lo8e, 32006
78 int pulseWidth = 411; //Options: 62, 118, 215, 411

79 int adcRange = 4896; //Options: 2848, 4896, 8192, 16384

N Adjust Parameters

\\ .LED Brightness (ledsrightness):

byte ledBrightness = 6@; //Options: @=0ff to 255-56mA U

o What it does: Controls how bright the LEDs on the sensor are.

o Range: 0 (off) to 255 (maximum brightness).

o Why it's important: The brightness affects how well the sensor can detect the blood flow in your finger. Too dim, and it
might not detect anything; too bright, and it might cause too much reflection and noise.

N Adjust Parameters
\\ Sample Averaging (sampleAverage):

byte sampleAverage = 4; //Options: 1, 2, 4, 8, 16, 32 E

o What it does: Determines how many samples are averaged together to produce a single reading.

o Range: 1 (no averaging) to 32 (high averaging).

o Why it's important. Averaging helps to smooth out the readings by reducing random noise. Higher averaging means

smoother data but slower response time.

\ Adjust Parameters

LED Mode (1edMode):

byte ledMode = 2; //Options: 1 = Red only, 2 = Red + IR, 3 = Red + IR + Green B

o What it does: Sets which LEDs are used for measurements.
o QOptions:

= 71:0Only the Red LED is used.

= 2:Both Red and Infrared (IR) LEDs are used.

= 3:Red, IR, and Green LEDs are used.

o Why it's important: Different LEDs can provide different types of information. For example, Red and IR LEDs are

typically used for measuring heart rate and Sp02, while the Green LED can be used for other types of measurements.

N Adjust Parameters

\\ Sample Rate (sampleRrate):

byte sampleRate = 18@; //Options: 5@, 168, 200, 400, 200, 1000, 1600, 3200 U

o What it does: Sets how many times per second the sensor takes a reading.

o Range: 50 to 3200 samples per second.

o Why it's important: A higher sample rate can capture more detail and provide more accurate readings, but it also uses
more power and can generate more data than necessary.

N Adjust Parameters

\\ Pulse Width (pulsewidth):

int pulseWidth = 411; //Options: 69, 118, 215, 411 U

o What it does: Determines the duration of each LED pulse.
o QOptions: 69, 118, 215, 411 microseconds.

o Why it's important: Longer pulse widths can provide more accurate readings by allowing more light to penetrate the

skin, but they also consume more power.

\ Adjust Parameters

ADC Range (adcRange):

\\ int adcRange = 4896; //Options: 2048, 4896, 8192, 16384 U

o What it does: Sets the range of the Analog-to-Digital Converter (ADC) that converts the analog signal from the sensor

to a digital value.
o Options: 2048, 4096, 8192, 16384.

o Why it's important: A higher range allows the sensor to detect stronger signals without saturating, but it can also

reduce the resolution of weaker signals.

\ YA =

THANK YOU

o< bu N

